On the Strong Law of Large Numbers for Sequences of Pairwise Independent Random Variables
نویسندگان
چکیده
منابع مشابه
the strong law of large numbers for pairwise negatively dependent random variables
in this paper, strong laws of large numbers (slln) are obtained for the sums ƒ°=nii x1, undercertain conditions, where {x ,n . 1} n is a sequence of pairwise negatively dependent random variables.
متن کاملOn the Strong Law of Large Numbers for Sequences of Pairwise Negative Quadrant Dependent Random Variables
For a sequence of pairwise negative quadrant dependent random variables {Xn, n ≥ 1}, conditions are given under which normed and centered partial sums converge to 0 almost certainly. As special cases, new results are obtained for weighted sums { ∑n j=1 ajXj , n ≥ 1} where {an, n ≥ 1} is a sequence of positive constants and the {Xn, n ≥ 1} are also identically distributed. A result of Matu la [1...
متن کاملMARCINKIEWICZ-TYPE STRONG LAW OF LARGE NUMBERS FOR DOUBLE ARRAYS OF NEGATIVELY DEPENDENT RANDOM VARIABLES
In the following work we present a proof for the strong law of large numbers for pairwise negatively dependent random variables which relaxes the usual assumption of pairwise independence. Let be a double sequence of pairwise negatively dependent random variables. If for all non-negative real numbers t and , for 1 < p < 2, then we prove that (1). In addition, it also converges to 0 in ....
متن کاملMarcinkiewicz-type Strong Law of Large Numbers for Double Arrays of Pairwise Independent Random Variables
Let { Xij } be a double sequence of pairwise independent random variables. If P {|Xmn| ≥ t}≤ P{|X| ≥ t} for all nonnegative real numbers t and E|X|p( log+ |X|)3 <∞, for 1 <p < 2, then we prove that ∑m i=1 ∑n j=1 ( Xij−EXij ) (mn)1/p → 0 a.s. as m∨n →∞. (0.1) Under the weak condition of E|X|p log+ |X| <∞, it converges to 0 in L1. And the results can be generalized to an r -dimensional array of r...
متن کاملOn the Convergence Rate of the Law of Large Numbers for Sums of Dependent Random Variables
In this paper, we generalize some results of Chandra and Goswami [4] for pairwise negatively dependent random variables (henceforth r.v.’s). Furthermore, we give Baum and Katz’s [1] type results on estimate for the rate of convergence in these laws.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Sciences
سال: 2020
ISSN: 1072-3374,1573-8795
DOI: 10.1007/s10958-020-04654-y